Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(8): eadk6352, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38381819

RESUMO

Fertilization involves the recognition and fusion of sperm and egg to form a previously unidentified organism. In mammals, surface molecules on the sperm and egg have central roles, and while adhesion is mediated by the IZUMO1-JUNO sperm-egg ligand-receptor pair, the molecule/s responsible for membrane fusion remain mysterious. Recently, MAIA/FCRL3 was identified as a mammalian egg receptor, which bound IZUMO1 and JUNO and might therefore have a bridging role in gamete recognition and fusion. Here, we use sensitive assays designed to detect extracellular protein binding to investigate the interactions between MAIA and both IZUMO1 and JUNO. Despite using reagents with demonstrable biochemical activity, we did not identify any direct binding between MAIA/FCRL3 and either IZUMO1 or JUNO. We also observed no fusogenic activity of MAIA/FCRL3 in a cell-based membrane fusion assay. Our findings encourage caution in further investigations on the role played by MAIA/FCRL3 in fertilization.


Assuntos
Proteínas de Membrana , Receptores Fc , Animais , Humanos , Masculino , Imunoglobulinas/genética , Imunoglobulinas/análise , Imunoglobulinas/química , Ligantes , Mamíferos/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/química , Sêmen/metabolismo , Interações Espermatozoide-Óvulo , Espermatozoides/metabolismo
2.
Int J Mol Sci ; 22(6)2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33806989

RESUMO

Mammalian oocytes are surrounded by an extracellular coat called the zona pellucida (ZP), which, from an evolutionary point of view, is the most ancient of the coats that envelope vertebrate oocytes and conceptuses. This matrix separates the oocyte from cumulus cells and is responsible for species-specific recognition between gametes, preventing polyspermy and protecting the preimplantation embryo. The ZP is a dynamic structure that shows different properties before and after fertilization. Until very recently, mammalian ZP was believed to be composed of only three glycoproteins, ZP1, ZP2 and ZP3, as first described in mouse. However, studies have revealed that this composition is not necessarily applicable to other mammals. Such differences can be explained by an analysis of the molecular evolution of the ZP gene family, during which ZP genes have suffered pseudogenization and duplication events that have resulted in differing models of ZP protein composition. The many discoveries made in recent years related to ZP composition and evolution suggest that a compilation would be useful. Moreover, this review analyses ZP biosynthesis, the role of each ZP protein in different mammalian species and how these proteins may interact among themselves and with other proteins present in the oviductal lumen.


Assuntos
Óvulo/citologia , Óvulo/fisiologia , Zona Pelúcida/fisiologia , Animais , Biomarcadores , Comunicação Celular , Evolução Molecular , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Mamíferos , Oócitos/citologia , Oócitos/fisiologia , Óvulo/ultraestrutura , Transporte Proteico , Espermatozoides/metabolismo , Zona Pelúcida/ultraestrutura , Glicoproteínas da Zona Pelúcida/genética , Glicoproteínas da Zona Pelúcida/metabolismo
3.
Int J Mol Sci ; 21(17)2020 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-32842715

RESUMO

Ejaculated sperm are exposed to different environments before encountering the oocyte. However, how the sperm proteome changes during this transit remains unsolved. This study aimed to identify proteomic changes in boar sperm after incubation with male (seminal plasma, SP) and/or female (uterine fluid, UF; and oviductal fluid, OF) reproductive fluids. The following experimental groups were analyzed: (1) SP: sperm + 20% SP; 2) UF: sperm + 20% UF; 3) OF: sperm + 20% OF; 4) SP + UF: sperm + 20% SP + 20% UF; and (5) SP+OF: sperm + 20% SP + 20% OF. The proteome analysis, performed by HPLC-MS/MS, allowed the identification of 265 proteins. A total of 69 proteins were detected in the UF, SP, and SP + UF groups, and 102 proteins in the OF, SP, and SP + OF groups. Our results showed a higher number of proteins when sperm were incubated with only one fluid than when they were co-incubated with two fluids. Additionally, the number of sperm-interacting proteins from the UF group was lower than the OF group. In conclusion, the interaction of sperm with reproductive fluids alters its proteome. The description of sperm-interacting proteins in porcine species after co-incubation with male and/or female reproductive fluids may be useful to understand sperm transport, selection, capacitation, or fertilization phenomena.


Assuntos
Líquidos Corporais/fisiologia , Proteoma/metabolismo , Espermatozoides/metabolismo , Animais , Feminino , Fertilização , Masculino , Sêmen/metabolismo , Suínos , Útero/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...